
Heuristics for Robot System Design using a
Concurrent Hierarchical Control Model

JohnL.Michaloski, RonaldLumia, and Thomas E. Wheatley
National Institute of Standards and Technology

September 1988

Abstract
The problem formulation of a robot control system i s dominated by the time-critical

aspect. To achieve success in th is time-critical domain, multiple processor implementations
are necessary. Multiple processor implementations of a robot control system implies that
system designers must use a different set of design heuristics, strategies, and rules than
those from a monoprocessing environment. T h i s paper discusses traditional hierarchical
structure as a real-time design methodology and proposes a concurrent extension of the
model to include virtual control loops. Using task decomposition, this concurrent hierarchical
design methodology attempts to solve the partitioning of system components across multiple
processors.

The recent advent of Computer Aided Software Engineering (CASE) Tools offer the
possibility to specify both the real-time and concurrent aspects of a system’s functionality.
However, these CASE only offer the semantics in which to model real-time behavior. These
CASE tools do not offer the strategies, heuristics and rules to assist in the development of
design model. As a part of the concurrent real -time control methodology, rules will be
presented that guide the designer through different areas of design, including real-time
constraints, multicomputer implications, interprocessor communication and syrzsbmni ;T \.ion
Finally, the current work at the National Institute of Standards and Technology be
presented to show how some of the design rules have affected the design and
implementation process.

1.0 Introduction
Within the design process there exists the need to establish and model the

relationship among components of a system with a formalized methodology. The hierarchical
structuring of a system design i s a common approach for showing the relationship among
entities in a system. One method for constructing a structured hierarchy of a system i s task

Th is article was prepared by United States Government employees as part of their official duties and is there-
fore a work of the U.S. Government and not subject to copyright. This article references certain commercial
equipment, instruments or materials and such identification does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose.

-1-

decomposition. Task &composition can be defined as the process of recursively breaking
down a task into smaller, more manageable tasks, until some atomic level of activity i s
reached. Defining a hierarchical structure for a robot control system starts with a set of high
level tasks and through a series of task decompositions reduces these tasks to a set of
motion primitives.

As an example of task decomposition, assume a position -controlled manipulator with
end-effector executes the command GET WRENCH, where the wrench i s located at the
logical position A and the desired logical goal position i s B. Within th is sample task, the
command GET WRENCH i s decomposed into a series of lower level commands GOTO,
GRASP and RELEASE. The lower level command GOTO i s responsible for mapping the
logical to physical representations of the points A and B and producing a series of
trajectories for the manipulator. The commands GRASP and RELEASE are responsible for
controlling both the manipulator and the end-effector, and providing a logical to physical
mapping for the object WRENCH. Using the notation of DeMarco [DEM79], this simple
task decomposition would be pictorially represented as follows:

Figure 1. Task Decomposition into Structured Hierarchy

A standard set of generic levels of decomposition of a robot control system has been
proposed at National Institute of Standards and Technology as a design methodology and i s
more fully explained in [ALB87]. Within this task specific example, the levels shown are
the TASK level which corresponds to user command GET WRENCH, the commands GOTO,
GRASP, and RELEASE map into the elemental move level; and the set of commands to
move the robot and end-effector (i.e. gripper) map into the primitive level. Not pictured are
the mapping of the series of trajectories into a servo level commands.

Perfoxming task decomposition i s a function of both the state of the world, and the
number of operations that must be performed. T h i s can get quite complex. Finite computing
resources imposes the following fundamental robot system design and implementation rule:
responding to an event too late nullifies the control no matter how intelligent the subsequent
action. Because a robot control system operates in a time critical domain, a traditional
hierarchical decomposition i s not sufficient to define a control system. A stnictured hierarchy

-2-

* only shows the partitioning of a system into modules, how the modules are arranged and the
interfaces. I t ignores the timing constraints and decision structure of the various
components of the system.

T h i s explicit timing consuaint implies the need for a better methodology than a
statically -linked hierarchical model of the entire control system. The National Institute of
Standards and Technology has been using a concurrent modification of the hierarchical
methodology to model real-time control for over 10 years[ALB81, BAR82, FlT85, FITZSS].
The methodology partitions levels of the hierarchy into individual control loops with fixed
cycle rates and feedback. At each level in the basic hierarchical breakdown an interface
exists where the adjoining levels exchange inputs and outputs as commands and status
much like a feedback control loop. The fixed cycle rate implies a periodic sampling of
commands and status which insures that global control flow i s goal-directed. Unlike a purely
sequential hierarchical decomposition, each lower level i s not completely dependent on i t s
neighboring upper level in this concurrent design. Although levels may share some data that
models the world, each level can be considered to run independently of each other,
responding to a command, and supplying a status much like a plant in a normal feedback
control system.

Modifying the previous task decomposition the following diagram now statically
illustrates the concept of concurrent hierarchy. Again using the notation of DeMarco
[DEM79], the task decomposition i s pictorially represented as follows:

WRITECOMMAM),

Partial Decomposition of Elmental Move Level

Figure 2. Concurrent Task Decomposition

This time the task decomposition partitions the robot control system into four concurrent
levels. The elemental move level i s partially expanded to illustrate the mechanism in which
the levels operate. For each cycle, a level reads a command and status, evaluates the
command and environment, and then determines a course of action which i s output as a
command and status to adjoining levels.

-3-

When composed as a system, concurrent hierarchical control can be defined as layers of
virncal control loops. When executing, each virtual control layer in the hierarchy can be
considered as part of a long chain defining the hierarchical state, yet each level's action i s
based on its own control flow. Much as a computer executes an instruction within a given
duty cycle, the virtual control loops correspond to layers of software modeled analogously to
a physical machine. The virtual control loop software exhibits cyclic feedback behavior that
samples inputs including command and status and guarantees some output within a given
time.

The underIying assumption of a fixed-cycle response time within the system restricts
the overall processing time for sophisticated control. There i s only so much processing a
level can perform within each fixed cycle. This leads to the motivation to further divide task
decomposition concurrently into planners and executors. The planner i s responsible for
generating a plan consisting of a series of actions. The "best " plan i s selected from a
candidate l i s t of alternative plans that achieve the commanded goal, given the current state
of the environment. An executor i s responsible for stepping through a generated plan. The
executor matches the current state of the machine against a set of preconditions as in a
production system, which triggers the corresponding action. Now, each level can maintain
real-time control, yet concurrently evaluate alternative future actions.

The planner and executor together compose the task decomposition module that
determines the control behavior. But there are more functions to feedback control than just
planning and executing. Supplying and interpreting external sensor information i s another
important function in feedback control. Sensor processing operates concurrently with the
control function to interface to the real world. Sensor processing consists of data acquisition
(reading sensors) and data qualification (translating raw sensor data into engineering units
and filtering bad data).

The disparity of purpose between control and the sensing leads to a function to mediate
the information exchanged between the control and sensing functions. The mediating
function, defined as the world model [ALBSl], state knowledge or global data base in a
production system"84, NILSO], allows the decision process to become more abstract in
i t s nature of queries about the world, and less dependent on the physical nature of the actual
sensors being used. As a supervisor of the systems data base, the world model provides
the system's best estimate and evaluation of the history, current state, and possible future
states of the world. The world model provides accurate and current information for reflexive
behavior (i.e. what is), the best estimate of the world in deciding the future plans (i.e.
answer what if), integrates the information from the sensory processing module. This leads
to a vertical partitioning of the virtual control loops into control, sensing and world modeling
components. Figure 3 illustrates the generic partitioning of one level within the hierarchy.

-4-

Figure 3. Control Level Partitioning

Further refining and partitioning of a control level i s possible, but i s beyond the scope of
th is paper. Albus more thoroughly covers the decomposition and partitioning of a hierarchical
control system [ALB87]. T h i s paper will use a coarser grain of partitioning to study basic
requirements applicable to all concurrent real-time system design.

2.0 Characteristics of a Real-Time System
A traditional real-time software development environment supports the development

and testing of algorithms for logical correctness on a "slower" host machine. Subsequently,
these logically correct algorithm are downloaded to a "faster" target system and tested under
real conditions. Target systems operate in the real-time domain which implies a premium
on efficiency. Real -time systems for monoprocessing environments have well-established
performance requirements. In general, real-time systems are characterized by performance
that includes high data communication bandwidth, maximized throughput, and fast
execution. To realize these requirements, real -time target systems make use of the
following features:

l fast context switching time between tasks
l small intempt latency
l feature priority scheduling
l allow high-priority tasks to instantly pre-empt lower priority tasks
l grant low-priority tasks non-preemptable status
lmethods for synchronization of tasks

However, this does not define a real-time system and leads to the following design
rule: reliable and deterministic performance within the time-critical domain are the
necessary requirements that define a real-time control system.

Implicit in this design rule are other unique real-time processing corollaries ignored in
a general purpose electronic data processing design methodology. The following design
corollaries are based on the need for deterministic processing time estimates and include:

Rule 1. Fairness is not an issue in real-time control. In a general purpose
operating system, every process i s given an equal opportunity at the CPU. At the
application level in a real-time control system either the processes are permanently
dedicated to the hardware or are guaranteed to be resident during.critica1 sections
(i.e. non-preemptable). Th i s i s not to imply that some processes should be

-5-

pmessor starved. Rather, scheduling must be established statically beforehand to
insure real -time execution.

Rule 2. Tasking must be deterministic and user-controllable, thus time slicing is
less important. In general, round-robin scheduling algorithms are nondeterministic
and therefore difficult to characterize execution. Difficulty in characterizing
execution implies difficulty in verification. Exact time quantum round-robin
scheduling can overcome the non-determinism but the overhead of continual context
switching overrides the use of the round-robin except in very low speed
applications where response time i s not critical. Instead, a priority based system
where processes execute in known sequence, surrender the processor when
finished, or are blocked awaiting an event, i s preferred.

Rule3. Virtual memory i s not as important. An operating system that supports
memory management of a virtual address space i s not required since the operation
of swapping memory in and out from disk i s slow, and the price of memory i s cheap.

Rule4. Dynamic creation of processes i s of limited usefulness [SCH87]. The
overhead required to replace unreliable or crashed processes by new processes i s
too large.

2.1 Design Considerations Due to Constraints Imposed by the Real-Time Domain
Design methodologies for a sequential electronic data processing environment propose

the use of small module size, modular independence, black box definition of modules that
hides implementation from purpose, and isolation of logical detail from the physical
implementation. The time critical domain of real-time control software i s well-served by
these design goals but adds additional constraints that demand a more rigorous
accountability in the design. The designer must be much more careful and exacting in the
=!E:!of &e. specificatim. Ir, order to establish red-time reliability, a stronger threshold of

assurance than just logical program correctness i s required. Much as structured
programming helped improve the quality of sequential software produced, a few
simplifications to a real-time controls system help improve i ts quality. T h i s section details
some simplifying assumptions about control system which reduce the software complexity,
the impact of timing and required efficiency necessary to meet program objectives.

The design concept to use layers of abstraction in which a program i s hierarchically
divided into a set of subprograms i s a commonly accepted programming practice and much of
structured programming i s based on this hierarchical structuring concept. In a purely
sequential machine, most structuring i s done with information hiding where as much of the
code i s treated as a black box as i s possible. The user knows how the box functions, but
does not need to know how it was implemented. Unfortunately, the nature of the
abstractions that may be conveniently achieved in a purely sequential machine do not work
with a real-time control system.

In real-time systems, the user may not need to know how it was implemented, but
must know what the black box will do, how long it wil l take, and what i t will do with

-6-

unanticipated problems. Again, this i s the deterministic criterion faced in real-time design.
One simplifying design rule in order to maintain a functioning system requires that no
modules should contain code that waits on an anticipated event. T h i s type of infinite waiting
can hang any system, be it sequential or concurrent. For example, how many times has a
program failed because a while loops condition doesn’t terminate. In a real-time control
system waiting on a dead sensor for a reading i s the analogous mistake. Instead of waiting
on a condition, the control code should sample the environment and act accordingly. If the
event has not occurred, measure how long the duration has been waiting for th is event, and
if i t exceeds a reasonable time period flag it as an error. Then a higher level can evaluate
whether the system can st i l l run without the use of this module. If one safety sensor fails,
that’s acceptable, if several safety sensors fail, and their backups fail, immediate system
shutdown may be the only recourse.

Sensor sampling has another profound effect on the specification. How the control
system responds to external events can be classified as either demand or periodic
functionality FRI791. A demand function i s triggered by the occurrence of some event every
time it i s performed. For example, a mp switch may only be activated intermittently, but
could be triggered successively at indeterminate intervals. A periodic function i s performed
repeatedly without being requested each time. For example, a vision system may supply a
new image at fixed intervals, regardless of whether the system requested the new image.

One design simplification that provides for a more rigorous specification of a control
system i s to sample all sensor or real-world inputs at a periodic rate, and removing &mami
functions and thus unpredictable behavior. Restructuring demand functions as periodic
functions can be done deterministically with the use of latches and polling, and repeated
sampling each control cycle. Although polling i s wasteful, the time required for a control
cycle to sample all the sensors can be realistically bounded by a fixed time period. T h i s also
has the effect of removing the racing conditions that typically result within a control program
as a result of heavy workload when sensors burden the system. Anticipating th is workload
by sz- hII j\;i:SOrs eliminates the racing condition and prevents unforeseen overload
and/or system crash.

Assuming the control system has a limited number of sensors, that can be sampled
within a relatively short time frame, t h i s constraint produces a uniform arrival distribution of
sensor updates. However, even systems with a large number of sensors should use this
approach. Systems that do not use this simplification and have too many sensors to sample
within a reasonable control cycle must assume a Poisson arrival distribution and determine a
lower bound on the interval between consecutive sensor signals in order to establish
functional correctness. Given a Poisson distribution for interrupt arrivals, one cannot
guarantee every sensor reading. With a periodic sampling of sensor methodology, one can
calculate the minimum repetition rates across all sensors to determine the minimum
operational control cycle necessary. Should this control cycle not have enough processor
time left over after sensor sampling to do processing, then the sensor sampling may have to
be divided across processors and the use of a sensor fusion module would have to be used.

3.0 The Effect of Concurrency and Parallelism on Design

-7-

In order to satisfy the real -time timing constraint of a robot control system, the
standard hierarchical structure model has been modified to include a formalized methodology
for concurrent design. A major advantage of this concurrent model of the robot control i s that
i t i s easily ported to a parallel implementation. So far, strictly mono-processor, real-time
design issues have been developed. Extending the control system to include parallel or
multi-computer solutions has a major impact on the design methodology. The major rule
governing any effective multiprocessor system design i s to exploit the benefits of
parallelism while minimizing the impact of parallelism on the software algorithms.

A robot controller can be characterized as a speedup-oriented multiprocessing
application since the Controller i s partitioned into a set of concurrent, cooperating processes.
Because there are a large variety of multicomputers available that offer dramatic parallel
performance, the methodology presented will focus on those parallel architectures that best
fit the system requirements of an intelligent robot controller in terms of price versus
performance. A multiprocessor system sharing a common or enhanced bus i s an example of
an architecture that offers a mix of capabilities that can accommodate the necessary
architecture diversity. These real-time multicomputer architectures require additional
features that support parallel operations including:

l coherence of cache memory
l interprocessor synchronization
l interprocessor communication

Coherence of cache memory i s beyond the scope of this paper and can be viewed more
as a required hardware design feature as opposed to a software design issue.
Interprocessor synchronization and interprocessor communication can be viewed as part of
the same problem; how to design concurrent software that i s reliable and correct. The pair
can be viewed similarly, except one i s exchanging control as opposed to data information.
Typically, synchrcmizat;r --- % 1nm closely to the hardware of the machine and the
communication models axe built using the synchronization primitives. Th i s following sections
wil l limit the design discussion to the software aspects of communication, plus the effect
synchronization on communication.

3.1 The Effect of Interprocessor Communication on Design
The basic design rule for interprocessor communication is that it must be efJicient

enough to justifr the additional overhead of communicating between processors, otherwise
the extra processors are extraneous. To evaluate the effectiveness of interprocessor
communication, the perfomance measures of latency and throughput are used. To
characterize a robot control system as real-time implies a guaranteed maximum latency for
interprocessor communication. Latency i s defined as the elapsed time before a message i s
acknowledged. Throughput i s defined as the number of bytes one process can send to
another process in one second, especially important for systems that share large amounts of
data. When designing, the distinction between guaranteeing arrival of small amounts of data
every 20 milliseconds must be contrasted to transferring large amounts of data efficiently
across the transport link. Thus, 20 bytes of information that has to be shipped every 20
milliseconds cannot be handled with a communication protocol that i s efficient for moving

-8-

8 large amounts of data, but may require 100 milliseconds setting up the physical link
handshakes and transport software headers.

T h i s leads to the following rule that guaranteed performance i.e. latency, not eflciency
i.e. throughput, is the ultimate measure of real-time communication.

The concepts of flexibility, data integrity and extensibility are equally as important in
evaluating a communication scheme, but are less tangible. Data integrity and flexibility can
best be explained with an example. On sequential machines, interprocess communication i s
performed by calling or invoking a subroutine and passing the appropriate parameters on the
stack by value or by sharing global variables. How the parameters are exchanged controls
the method of communication. Passing parameters "by value" places a copy of the parameter
onto the stack and can be considered message passing since each processes' internal
variables are independent of the other processes. Such a method of communication can be
considered message passing. Passing parameters "by reference " pushes a pointer or
address onto the stack so that data i s shared between the processes. Such a method of
communication can be considered a shared memory technique. In a monoprocessing
architecture, passing parameters "by reference " saves excessive copying. However, in
parallel processing, such copying i s more flexible since a user cannot be assured that the
two processes both have access to the pointers or addresses, and that the addresses are
valid. For example, in a dual ported memory scheme, on-board versus off-board addresses
differ.

This subtlety raises a real -time control design dichotomy, although complete copying
offers better flexibility and data integrity; i t i s slower and therefore infeasible for many
design constraints. Within parallel architectures, th is communication dichotomy i s modeled
as a tightly or loosely coupled approach. Hybrid model approaches combining aspects of
both form of communication are also quite common. Figure 4 illustrates the coupling of
memory and processors in each comIlGcation scheme.

-9-

TIGHTLY COUPLED SHARED MEMORY

P P P

I Interconnect I

M P

I

- - -
M

LOCAL

DUAL
PORTED

LOOSELY COUPLED MESSAGE PASSING

-

I Interconnect -1

Figure 4. Tight versus Loose Menwry Coup!ing

Loosely coupled systems have private memories where processors generally cannot
read each others memory and must have an explicit message-passing communication
channel. Conceptually, message passing can be considered passing information by value.
Message passing systems have memory attached privately to each processor (at least
conceptually), so that processors communicate only through explicit transmissions of whole
messages [LYO87]. Message passing i s more generic in that messages can be passed
not only across backplanes but across machines.

Tightly coupled systems have a public memory architecture, where processors
communicate through shared memory. Conceptually, shared memory communication can be
viewed similarly to passing parameters by reference. Shared memory communication
provides equal access to all processors to the shared memory. Shared-memory offers many
advantages, including ease of sharing data, rapid communication and high performance. The
advantages that make shared-memory architectures attractive result from the tight coupling
along the critical path between processors and memory. T h i s leads to a notable increase in

-10-

performance. Shared memory offers such a highly efficient and straightforward method for
communicating among parallel processes that i s commonly used for parts of real -time
systems pAU86, KOR86, KAZ871. Moving large amounts of data or shifting processes to
and from private processor memories can be cumbersome and slow. A shared memory
scheme i s more appropriate here since attempting to use a message passing technique as a
server to mediate shared data can be much slower than direct access m 8 7] (factor of
thirty). The disadvantages that arise from a shared memory communication scheme include:
1) guaranteeing mutual exclusion of shared resources across processors, 2) as the number of
processors grow, contention in the form of arbitration of accesses to the common memory
degrades system performance, 3) maintaining a consistent view of absolute, physical
addressing across processors, and 4) shared memory models are not easily portable.

Th is leads to the following communication design rules: restrict shared memory for
very high-speed specialized design purposes such as moving very large amounrs andlor time-
critical dara between processes.

3.2 The Effect of Data Abstraction on Communication and Design
Many times the distinction between a shared memory implementation and a message

passing system i s not explicit but i s based on the level of abstraction of the data and
implementation. From the implementation standpoint, suppose two processes share a
variable using a semaphore, mutual exclusion of a variable i s provided through semaphore
signals before each read and write. T h i s shared memory exchange can be considered
message passing. The subtle distinction arises in that shared memory schemes are
application -specific and implemented with little operating system intervention while
message passing i s usually considered a part of the overall operating system.

The level of abstraction of the data shared between processes strongly effects the
communication design. The most straightforward algorithm i s double buffering using shared
memory where only one reader and one writer grab cor$et r: If the cxnmon memorj
until finished when restriction to common memory i s removed. In th is case, each
communication partner must explicitly know the representation of the data. Exact knowledge
of the physical data representation and manipulation i s unwanted because i t forces more of
the physical details of the machine into the design. The clientherver model overcomes this
problem. This method f i t s into a more classical message passing type of interface in that it
adds another layer of abstraction, and i s therefore slower. The server offers a level of
abstraction from the user (i.e. the client) who queries the sewer. The server hides the client
from the physical implementation details and allows the level of discourse to be of a logical
and abstract nature. The clientkerver offers the strongest rationale for using a message
passing scheme (even if i t simply a subroutine call). Within the control hierarchy, the world
model acts a server to i ts clients, the planner, and the executor. Clients request service from
the world model. If the world model i s busy, this request i s queued. When ready, a client i s
serviced by the world model. The world model translates all logical queries concerning the
system into a corresponding physical representation and responds with an answer. Thus,
the world model shields i ts clients from understanding its physical representation of the
world.

-11-

Given these two communication interfaces, this general design rule applies :

A server is necessary when one process views communication information logically,
while the other process is closely tied to the physical representation. Further, the
communication of information that i s based on a complex data representation
imposes a large burden of programming responsibiliry on the client. A server is
necessary in order to shield the clientfrom complex information access.

3.3 The Effect of Synchronization on Interprocessor Communication and Design
Synchronization i s a basic building block that a multiprocessor system must contain.

Synchronization serves the dual purpose of enforcing the correct sequencing of processes
and ensuring the mutually exclusive access to certain shared, writable data. Synchronization
i s usually supported by some special -purpose hardware. These basic synchronization
primitives are then used to build higher level synchronization and communication tools in
software or microcode. Communication and synchronization are difficult to separate because
communication primitives can be used to implement synchronization protocols, and vice
versa. The amount of synchronization leads to the characterization of communication
mechanisms as either synchronous (or blocking) or asynchronous (or non-blocking).
Routinely, blocking implies surrendering the processor and waiting for some condition to
occur before continuing execution. Whether to block provides the fundamental design
distinction between a synchronous and rigorous communication exchange and an
asynchronous and efficient communication exchange.

Synchronous communication protocol uses an explicit handshake for acknowledgment.
Both the sender and the receiver synchronize, the message i s sent, and the sending
processes waits until i t receives an acknowledgment. In an asynchronous communication
protocol, the sending process does not have to wait or block for the receiving process to
acknowledge receipt of the message. Since asynchronous messages can arrive at random
times, queues are attached to save messages. Acknowledgment i s @ p k J ; i d , but can be
installed as part of the mechanism. The message itself must contain instructions whether an
acknowledge i s necessary.

Synchronous message passing primitives combine process synchronization with
infomation transfer. Two processes f i r s t synchronize, then one process transfers
infomation to the other, and finally each continue their individual activities. This
synchronization i s called a rendezvous. The programming language ADA uses th i s style of
communication. Another style of synchronized communication i s the extended rendezvous or
transaction concept from Concurrent C [GEH86]. In a simple rendezvous, the exchange of
information i s unidirectional - from the message sender to the receiver. An extended
rendezvous allows bidirectional information transfer using only one rendezvous. Thus with
each transaction both processes exchange information. Figure 5 graphically illustrates the
differences between asynchronous and synchronous communication.

ADA is a registered trademark of the U.S. Govenrmen~Ada Joint Program Office.

-12-

Synchronous Communication

j
t

* lzJ- 1system signal

-1 system signal

SYNCHRONIZE

COPY
w

4
ACK

Asynchronous Communication

intermediate
buffer

q
COPY

t k

k+l

COPY
___)

q
Figure 5. Synchronous vs. Asynchronous Communication

One advantage of synchronous communication i s simplicity (no queues or queuing
monitor) and thus low overhead. Another advantage i s the savings in space and time that
result because data can be directly copied from the sending processes’ buffer to the receivers
with no intermediate storage action required. Finally, the one-to-one correspondence of a
synchronous transmission provides a stricter notion of accountability and determinism that

-13-

‘ enhances software reliability. The major disadvantage of synchnous communication i s the
computational overhead spent synchronizing and acknowledging, i.e. waiting, for each
communication. Another disadvantage i s the lack of flexibility and subsequent extra software
penalty for handling dynamic reconfgurations such as many-to-one communication channels.
For example, in a dynamic environment, a synchronous communication exchange requires a
priori knowledge by both parties of the other’s existence in order to synchronize.

The advantages of asynchronous communication are speed and flexibility. The lack of
synchronization and acknowledgment steps improves performance. The disadvantage i s that
error detection may be overlooked. Flexibility results in that the message may embody more
of the communication mechanism, i.e. destination of a response of acknowledge. With
information embedded in the message rather than the a priori synchronous connection, a new
client can be dynamically added to a server by including a destination address within the
message. The disadvantages of asynchronous communication i s the lack of accountability for
errors thus requiring programmer discipline to foresee and handle errors.

These two models are basically equivalent, in that the synchronization (i.e. control
information exchange) before the communication can be considered a bidirectional
asynchronous communication. Further, asynchronous communication i s usually extended to
include an acknowledgment step. In addition, synchronous communication can use a table
lookup for dynamic reconfiguration. Th i s leads to the following design rule: from a software
validation standpoint, synchronous communication is preferred, but the system may not
tolerate the extra amount of overhead. In general, for connections that are statically
predefined one-to-one exchanges, synchronous communication provides the most reliable
scheme. For connections mapped as many-to-one and dynamically reconfigurable,
asynchronous communication provides the cleaner but less rigorous design.

3.4 The Effixt of Communication Connectivity on Design
Within a message passing system (possibly implemented via shared memory),

coordinating the location of the receiver of a message i s an important design issue and will
be termed connectivity of the exchange. Connectivity can be either temporary, known as
datagrams, (i.e. for the l i fe of the transmission), or permanent, known as virtual circuits
(where the communication i s ongoing until the channel i s closed much like f i le manipulation
activities) [POS80]. Interprocessor ~ ~ ~ e ~ t i v i t ycan be established dynamically through a
system broadcast [FRI87] or by the more common, statically defrned connections [NAR86].
A dynamic connection i s established by the sending process broadcasting a system-wide
request for the receiver location, who responds with i t s location, and then communication i s
direct.

Dynamic
alternative for
connections a

connections offer flexibility, but the overhead reduces performance. A hybrid
permanent communication l i n k s proposes the use of dynamic communication

It system start-up to establish the connectivity. Dynamic connection for
temporary l inks would not be useful for a system with stringent real-time control demands.
Static connections use tables of some kind to link sending and receiving processes. Static
connections are fast, but require the logistical overhead of some centralized server to map
the logical to physical locations.

-14-

The amount of connectivity i s another issue. Given a message passing system,
whether to decentralize message service and attach a message exchange with each process
or use a centralized message server for a family of processes i s another design
consideration. Which message server approach depends on the system performance. If
speed i s a concern, numerous message exchanges would require unnecessary overhead.
Each time a process must wait for a message, it blocks, th is requires a context change
between processes. With numerous message exchanges, CPU perfomance would lag
burdened by the continual context swapping between processes. A centralized approach
reduces the context switching overhead, yet requires an encoding system to describe the
destination of the finalmessage.

Destructive Read

Decentralized connectivity i s more flexible, but imposes a larger system administration
problem. Each message exchange must have i ts own queue and may be more difficult to
verify response performance. Th i s approach would be more useful for high-level demon
type processes with infrequent activity. Only running occasionally, such as in emergency
situations, these demons are best treated as processes independent of many algorithms, and
part of a set of general purpose tools commonly shared amongallalgorithms.

message passing

The basic design rule applicable to connectivity i s to centralize modules that depend on
each other and decentralize modules that are independently coupled. In the case of a fault-
tolerant module, processes that communicate across processors would require dynamic and
decentralized connectivity.

non-queued

3.5 The Effect of Data Loss on Communication
Initially, general communication can be considered simply as a two part process -

writing and reading. One process writes infoxmation, and another process reads th is
information. Interprocessor communication can be characterized as a read-write sequence
with two additional facets, synchronization for the exchange of information, and destructive
versus non-destructive read/write execution. For example, writing to queue i s non-
destructive (assuming enough storage). Writing to a variable i s destructive. Removing an
item (message) from a queue i s a destructive operation. Reading a variable’s value i s a non-
destructive operation. Figure 6. summarizes the combinations of non-destructive versus
destructive execution during communication and the styles of communication that result.

queued message -

Destructive Write Non-Destructive Write

variables, mail (assumes explicit

passing

Idelete mechanism)Non-destructive Read I
Figure 6.Styles of Communication

The execution may also have a time-out feature, so that the reader (or writer) does not
wait indefinitely for a new information. The information exchange can be synchronous (both

-15-

' actively participate in the exchange at the same time) or asynchronous (where the
information exchange occurs non-deterministically). Communicating task interaction can be
identified in real-time software as asynchronous with data loss, synchronous execution
without data loss, and synchronous or asynchronous operation with possible loss of aged
data [SCHSS]. Program verification between communicating processes i s complicated by
data loss. Synchronous communication i s the preferred communication technique since it
encourages accountability between communicators. However, a stringent performance may
dictate asynchronous communication and the subsequent possibility of data loss. This
leads to the following discussion on various data loss communication issues.

a) How should the receiving process acknowledge a new message from the sending
process? For example, with each level running independently in a virtual control
loop, how often should the command/status handshakes acknowledging execution
be required? Should there be a one to one correspondence between commands and
status or the latest command or status be supplied as often as possible? Too much
handshaking with a synchronous protocol (for example, upon each message
exchange) slows system performance considerably. However, for a state machine
implementation, one to one correspondence between a command and a status must
be provided. In this case, a general purpose design rule within the concurrent
hierarchy incorporates a time stamp embedded within a command. T h i s time
stamp i s acknowledged by the lower level by returning the current input command
with time stamp embedded within the returning status. This design produces a
flexible, yet efficient, means to accomplish the verifying handshake.

b) How long should a process wait for a message? Should the receiving process
continue operation using the latest message again? As a simplifying system
assumption, the design rule within the concurrent hierarchy to use one to one
synchronous message exchanges, especially for interlevel communication, should be
used to encourage a state transition machine that provides a deterministic
execution trail.

c) If both processes are running asynchronously and the sending process i s generating
more messages than the receiving process can consume, should messages be
queued or overwritten?

Most message passing facilities assume the programmer desires queuing of
messages. However, if levels were to run completely asynchronously within the
hierarchy, messages could queue up. Th i s leads to the design rule within a
concurrent hierarchy to have neighboring higher levels programmed to delay issuing
a new command to the neighboring lower level until the previous message has been
acknowledged in the returned status. Th is method of communication i s dictated on
the premise that the executor i s sampling commands and supplying status at known
intervals at time throughout the system.

4.0 Analysis of System Software Requirements
The transition from a concurrent design to a multicomputer implementaiion includes the

-16-

' need to map processes to processors. Should the granularity chosen not realize the desired
speed, additional processors may be required, or revision of the algorithm on the host
system for subsequent use on the target system may be required. Because of the iterative
nature of defining the allocation of processors and scheduling of tasks, the design
methodology must be based on the need to meet timing requirements. In the case of a robot
control system, understanding the disparity of timing constraints among the different
concurrent hierarchy levels i s important in understanding the varying degrees of parallelism
required.

At the very lowest levels of the concurrent hierarchy, the functional components must
be efficient and highly streamlined such that parts of the control system may have to run
without the luxury of any operating system assistance. A low level servo controller cannot
afford the time to allow multi-tasking or other system overhead since updates are striving
for millisecond updates, and microseconds are preciously few. Processing at th is level
requires stand-alone processing with li t t le or no interaction with an operating system. A
kernel which handles spurious interrupts, limited background UO service and a basic monitor
for handling off-line board level troubleshooting i s sufficient for streamlined system support.
However, stand-alone levels st i l l require interprocessor communication to other levels in the
hierarchy.

Higher levels are allowed longer processing intervals so that context switching using
multi-tasking among different processes can be performed. Further, higher levels may
require a high-speed fi le system for data logging and performance analysis that can be used
as an evaluation tool or as a postmortem data recorder box (or "black box") after an
unforeseen crash of the system.

Review of system requirements suggests the need for a computing system with a rich
set of software tools that supports a broad variety of processing nee& ranging from
modeling the real-time hierarchy to supporting the user interface. T h i s rich tool set should
feature system software support equipped with interprocessor communication,
synchronization, multitasking, preemptive and priority scheduling, resource (including
memory and file) management. Figure 8 illustrates the set of programming tools necessary
in a hierarchical real-time control system operating on a parallel pipelined system
architecture. Note that the location of memory i s not important because interprocessor
communication (ipCOMM) i s concerned with data flow, independent of the actual
communication means; be it high-speed bus, generalized communication network or shared
memory.

-17-

Multitasking
I

H th-Speed Stand-alone

4

High Level Control
&

User Interface

Performance Analysis
&

Data Logging

Legend
A,B,C,D,E,F,G - tasks
ipCOMM - interprocessor communication server
G.P.O.S. - general purpose operating system

; F/S - high-speed fi le system

Figure 8. Programming Environment

Th is prototype architecture for hierarchical control exhibits differing styles of
concurrency including communicating parallel processors execution or interleaved execution
on a single processor. Because of the disparity of response times required at various levels
in the hierarchy, different levels of granularity are required. At the lowest levels, planning
may be impossible, and even execution may require multiple processors to achieve a
solution. Moving higher in the hierarchy, timing constraints prevent the planner and executor
from residing on the same processor. In th is case, the two processors would run in parallel
and asynchronously the planner would update plans. At higher levels, completion time for
plans i s less critical; so that multitasking on a single processor can supply enough
processing power for both the planner and executor. Further, if the timing constraints are not
stringent, multiple levels can be combined onto one processor, or the use of a local area
network can be used to connect other computers as a part of the controller; Each of these
configurations i s based on the response time requirement of the level. Figure 9 provides a

-18-

guideline for the type of performance required of differing levels in the hierarchy.

LEVEL minutes

CYCLE/ 2 seconds
RESPONSE

TIMES

I

LOW SPEED

Asynchronous
MEDIUM SPEED Multiprocessing

Multitasking

250 msec ,

Clmsec and/or dedicated hardware
HJGH SPEED Fine Grained Multiprocessing

Figure 9. Computing Resource Utilization Based on Cycle Response Time

4.1 Survey of Existing Design Architectures
A survey of existing multiple processor robot control systems covers a wide range of

implementations. The requirement to satisfy real-time constraints has lead to numerous
implementations using tightly coupled architectures with several processor boards on a
common bus [PAU86, NAR86, KOR86, KAZ87, GAU87, SCH871. The target operating
system of these implementations vary in degree of system complexity from the basic use
interrupts and handshaking operations to handle interprocessor communication[PAU86], to a
limited operating systems with special communication features [NAR86], to an extended
real-time operating system [SCHSS].

The ncTremcntioned implementations share common system architectural
characucristics wift: a concarrent hierarchical control system. Although few of these control
systems are directly labeled as a hierarchical, most systems have at least a two-level
hierarchy, with a low-level, real-time subsystem handling real -time motion control, and a
slower high-level subsystem responsible for planning. Th i s separation into real-time and
non-real-time components has been employed by IBM [KOR86] which has one or more real-
time systems, connected to the programming system by a real -time bridge. The University of
Pennsylvania has a robot coordinator issue force and motion commands to a real -time robot
force and motion server. Brown University uses a series of high-speed networks connecting
a real-time servo systems and general computing resources. T h i s basic hierarchical
decomposition in each of these applications can be generalized into two virtual control loops
exchanging commands and status. IBM extends the exchange of commands and status to
include varying frequencies; such as every cycle, every nth invocation or asynchronously.
Implicitly, these applications have additional levels within the hierarchy, but these levels do
not directly correspond to a virtual control loop implementation because of the concept of one
return status implicit in a serial execution of the processes. For example, a Cartesian
trajectory plan in a sequential robot language such as AML must be decomposed into a
series of kinematic poses for the robot [TAY82]. Th is process i s implicitly hierarchical.
These implicit levels could be partitioned into separate concurrent processes that

-19-

I ' communicate through established interfaces rather than serial routines that communicate via
subroutine calls. Further, with concurrent operation, the concept of sampling the return
status, not just receiving a final status, embodies the feedback nature of a virtual control loop.

4.2 Design Architecture at the National Institute of Standards and Technology
The concurrent hierarchical model of a robot control system containing virtual control

loops has been implemented with a purely executor style of task decomposition for a robot
control system at the National Institute of Standards and Technology [BAR82]. The flow of
control was based on state-table transitions. Where planning was appropriate, static plan
definitions were used. The system offered several benefits. First, the system was sensory -
interactive and adapted to perturbations in the environment in real-time even though the
world model was limited to basic feature recognition. Second, hierarchical decomposition
created well-defined interfaces that allowed substitution of different implementations of a
level without must effect on the higher or lower levels that lead to proposed interface
standards [FIT85]. Finally, the system was able to executc in real-time and supply robot
updates within a fixedmilliseconds interval.

Work has begun on the design and implementation of a concurrent hierarchical control
model that includes planning, extensive world modeling including maps, object definitions
and feature recognition. The concurrent hierarchical control systems under development will
be adapted for both robot and autonomous vehicles. To maintain cost, flexibility and
portability, multiprocessors communicating across a shared backplane has been chosen for
the parallel architecture. Many commercial products are now available that can handle the
multicomputer synchronization and communication problems. The system design i s
committed to use as many commercial system and support products as possible. Major
procurement decisions were based not only on availability and cost, but also on the ability of
the product to make as much of the concurrency as transparent to the user as possible.

The system ucder +dgn is a hybrid design that at run-time clouds the distinction
between the host ru4 tarLet system. ' f i e real-time part of the system will be termed the
target system and i s composed of a series of Motorola 68020 processor boards connected
via a VME bus. At the heart of the target system i s a small, fast, multitasking executive to
provide real-time capabilities, but little functionality. This real -time executive does not
directly support a file-system. With such a real-time executive, task-switching i s in the 100
microsecond range. A system clock synchronizes software execution on all processor
boards. This system-wide synchronization pulse forces levels to execute in lock step and
allows single-stepping across levels at the fundamental executor cycle rate.

Layered on top of this real-time kernel, i s a high-speed multicomputer communication
scheme that uses the backplane bus as the physical link.Shared memory globally common to
al l processors called common memory i s the medium in which high speed multicomputer
communication takes place. The next layer supports lower-speed communication across
backplanes. This transport layer i s integrated into the larger network system via either a
high-speed, interbucket bus connector, or a local area network. The local area network

-20-

protocol i s a 4.2BSD Unix' socket interface and Transmission Control ProtocoVInternet
Protocol (TCPDP). T h i s layer provides services that are non-real-time. The fast networking
of the host and target system allows a series of hosts to be used as development systems,
and as providers of non-real-time services, such a user-interface or graphic diagnostic
display, in the final system configuration.

Figure 10 illustrates the relationship between the various components of the overall
system. The target system i s partially broken down to illustrate how a level interacts with
the system components. Only one level of the hierarchy i s displayed and this i s but one of
several possible scenarios for partitioning the processes among processors. In this case, a
partition of the planner and executor across processors uses communication of the plans
through shared memory. The world model contains servers to interface to either the planner
and executor, and to the sensor processing modules.

I 68020

COMMON
MEMORY

HOST/ * I INTERFACE

SYMBOL TABLE

lNcREMENrAL ENP-10
LIM[ERRxIADER

CMC

I I

IAN- NEIWOREQ

68m

l - SHARED DATA

Figure 10. Overview of the System Environment

'UNlX i s a registered trademark of AT&T Bell Labs

-21-

5.0 Conclusion
Just as one cannot use a sequential machine to implement a real -time robot control

system, one should not use a sequential methodology to design a real-time robot control
system. Th i s paper has addressed some concurrent design issues associated with real-time
control. Initially, task decomposition i s used in order to generate the system structure
hierarchy. The hierarchical model i s extended for a real-time control system through the use
of concmnt levels within the hierarchy. Each level within the hierarchy emulates a
feedback control loop by sampling as inputs the command from a neighboring upper level,
comparing the input to the sensory sampled environment, computing a goal-directed action,
and outputting this action to the neighboring lower level, all within a fixed response time.
Th is virtual control loop performs periodic sampling of commands and status and insures that
global control flow i s goal directed. Mapping this concurrent hierarchical model of the control
system onto a parallel multicomputing system has proved a reasonable method of
implementation. It offers the power of a multicomputer system with the flexibility to assign
processes to processors as performance dictates. The concurrent hierarchical software
model offers a convenient software structuring tool that allows varying degrees of actual
system parallelism.

The impact of concurrency requires new heuristics and rules for the design. A
concurrent hierarchical design must f i rs t acknowledge that for real-time control, reliable and
deterministic performance i s the m o s t important design constraint. Mapping concurrency
onto a parallel computing environment imposes more demands on the designer. The
designer i s required to specify how long a module will take and what i t will do with
unanticipated problems. Finally, multiple computers need interprocessor communication and
synchronization to achieve the parallelism. To be effective, the multiple computer
communication must be efficient enough to exploit the benefits of parallelism, while
minimizing the impact of parallelism on the software algorithms. Table 1 summarizes some
of the design advantages and disadvmtages of \ Trious cornmimication design strategies.
Double lines separate independent communication jcatures, of which one of the alternative
designs must be chosen. Single lines between the double lines demarcate the selections for
each feature.

-22-

Issue

Tightly Coupled .
ShdMemory

Laosely Coupled/

Feature

Egh-spead, Rarely portable, interconnectlimits,
rimple contention problems

Flexible, generic Slowa, limited databnndwidth

ADVANTAGES

Message Passing

DISADVANTAGES

better security,

coupling

synchronous comm.

Asynchronour comm.

Temporary Channel

Synchronization
Simple, guaranteed corn. Slow, requires time-out

Flexible, fast Overhead - queuing

multiplex resources repeated overhead

Static cornectivity rimple. fast cenrralizad serverneccssary

cheaper for larger number

low ovahead

Dynamic connectivity flexible, reconfgurable

of ~ o c e s s o r s

1:1 commun besf

slower, larger overhead,

Decentralized connectivity

Connectivity

unbundled, demon model slower, resource intensive

special hardware

II Cenrralizedconnectivity I bemrrccountability I extra decode overhead each message

Table 1. Communication Feature Summary

In summary, augmenting hierarchical structuring of such a control system to contain
concurrent control loops offers an easy and systematic approach to generating a parallel model.
From experience, an implementation of a hierarchica! con+rol system based on these
concurrent concepts i s both robust and effective because of uke stIucture imposed on the
software. The use of levels offers the benefit of information hiding, so that software design
and development can concentrate on local problems instead of attempting to solve problems
globally. Further, the addition of a system-wide synchronization pulse where the levels
execute in lock step adds the dimension of comprehensibility to the system. Ln general, parallel
systems are difficult to understand. With a system heartbeat, execution can be characterized
as a state machine where transitions are predictable and repeatable. T h i s does not imply that
a l l software i s rigidly defined with a state transition mechanism. Rather, software abstraction
i s adjustable with selective degrees of resolution; much like changing the magnification of a
microscope. At the highest level of abstraction, the state transition are defined as the
commands and status exchanged. This allow easy pinpointing of problems within the
hierarchy. Tracking execution with a finer resolution of abstraction relies on the basic state
transitions employed by the computer. From a software development standpoint, testing and
analysis i s much easier with a system that allows a selectable resolution of software
abstraction. Thus, structuring robot control with a hierarchical model can reduce the
complexity of any single processing node and distribute the processing and exploit the
parallelism that exists as more and more layers of the control are added.

-23-

References
[ALB81] ALBUS, J.S., BARBERA, A.J., NAGEL, R.N. "Theory and Practice of Hierarchical
Control," Twenty -thirdIEEE Computer Society International Conference, 1981. pp.18-39.

[ALB87] ALBUS JS, McCAIN H.G., AND LUMIA R. NASAINBS Standard Reference Mod-
e l Telerobot Control System Architecture (NASREM), N B S Technical Note 1235, National
Bureau of Standards, Gaithersburg, Md., June 1987.

[BAR821 BARBERA, A.J., FTTZGERALD, M.L., AND ALBUS, J.S. "Concepts for a Real-
Time Sensory -Interactive Control System Architecture, " Proceedings of the 14th Southeast -
ern Symposium on System Theory. April 1982.

[BRI793 BRIITON, K.H. "Specifying Software Requirements for Complex Systems: New
Techniques and Their Application, " Proceedings of the IEEE Specifications of Reliable Soft-
ware Conference, 1979.

[DEM79] DEMARCO, T. Structured Analysis and System Specification. Yourdan Press,
New York, 1979.

[DUBSS] DUBOIS, M., SCHEURICH, C. AND BRIGGS, F.A. "Synchronization, Coher-
ence, and Event Ordering in Multiprocessors, "IEEE Computer, pp. 9-21, February 1988.

[FIT851 FITZGERALD, M.L., BARBERA, A.J., ALBUS, J.S. "Real-Time Control Systems
for Robots," SPlNational Plastics Exposition Conference, 1985.

[FIT2851 FITZGERALD, M.L., BARBERA, A.J. "A Low-Level Control Interface for Robot
Manipulators. " NBS-Navy NAV/SIM Workshop of Robots Standards, June 6-7, 1985.

(m 8 6] FRIEDLANDER, C.B., AND WEDDE, H.F. "Distributed Processing Under the
Dragon Slayer Operating System."

[GAU87] GAUTHIER, D., FREEDMAN, P., CARAYANNIS, G., AND MALOWANY,
A.S. "Interprocess Communication for Distributed Robotics, " IEEE Journal of Robotics and
Automation, Vol. R403, No. 6, Dec. 1987. pp. 493-504.

[GAG861 GAGLIANELLO, R.D., AND KATSEFF, H.P. "A Distributed Computing Envi-
ronment for Robotics. " In Proceedings of the IEEE International Conference on Robotics
and Automation (San Francisco, Cal. April 1986). IEEE, New York, 1986, pp. 1890-1895.

[GEH86] GEHANI, N.H., ROOME, W.D. "Concurrent C," Software - Practice and Experi -
ence, Vol. 16(9), 821-844 (September 1986).

[KAZ87] KAZANZIDES P., WASTI H., AND WOLOVICH W.A. "A Multiprocessor Sys-
tem for Real-Time Robotic Control: Design and Applications, " In Proceedings of the IEEE
International Conference on Robotics and Automation (Raleigh, N.C. March 1987) . IEEE,

-24-

New York, 1987, pp. 1903-1908

[KOR86] KOREIN, J.U., MAIER, G.E., TAYLOR, R.H., AND DURFEE, L.F. "A Confie -
rable System for Automation Programming and Control." In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (San Francisco, Cal. April 1986). IEEE,
New York, 1986, pp. 1871-1877.

[KRU87] KRUSKAL, C.P., S M I T H C.H. "On the Notion of Granularity ", National Bureau of
Standads Report, July 1987.

[LYO87] LYON, G.E. "On Parallel Processing Benchmarks ", National Bureau of Standards
Report, N B S I R 87-3580, June 1987. pp.1-23.

[LYO86] LYON, G.E. "Programming The Parallel Processor ", Second Symposium on the
Role of Language in Problem Solving, sponsored by the Applied Physics Laboratory of Johns
Hopkins University, April 2-4,1986.

[NAR86] NARASIMHAN, S., SEGEL, D., HOLLERBACH, J.M., BIGGERS, K., AND
GERPHEIDE, G. "Implementation of control methodologies on the computational architec -
ture of the UtahFlIT hand." In Proceedings of the IEEE International Conference on Robot-
ics and Automation (San Francisco, Cal. April 1986). IEEE, New York, 1986, pp. 1884-1889.

[N ILSO] NILSSON, N. Principles of Artificial Intelligence, Tioga Publishing Company, Palo
Alto, CA, 1980.

[PAU86] PAUL, R.P, AND ZHANG, H. "Design of a Robot Force/Motion Server." In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (San Francisco,
Cal. April 1986). IEEE, New York, 1986, pp. 1878-1883.

[POSSO] POSTEL, J. "Internetwork Protocol Approached, " IEEE Transactions on Corrmu-
nications, Vol. COM-28, Number 4, April 1980, pp. 604-611.

[SCHSS] SCHWAN, K., BIHARI,T., WIDE, B., AND TAULBEE, G. "GEM: Operating
System primitives for Robots and Real-Time Control Systems," In Proceedings of the IEEE
International Conference on Robotics and Automation (St. Louis, Mo. March 1985) IEEE,
New York, 1985, pp. 807-813.

[SCH87] SCHWAN, K., BIHARI,T., WIDE, B., AND TAULBEE, G. "High-Performance
Operating System Primitives for Robotics and Real-Time Control Systems, " ACM Transac-
tions on Computer Systems, Vol. 5, No. 3, August 1987, pp. 189-231.

[TAY82] TAYLOR, R.H., SUMMERS, P.D., AND MJZYER, J.M. "AML: A Manufacturing
Language," The International Journal of Robotics Research, Vol. 1, No. 3, Fall 1982, Massa -
chusetts Institute of Technology.

m 8 4] WINSTON, P.H. Ampcial Intelligence, Addison-Wesley Publishing Company,

-25-

